Abstract

The ongoing COVID-19 pandemic has brought science to the fore of public discourse and, considering the complexity of the issues involved, with it also the challenge of effective and informative science communication. This is a particularly contentious topic, in that it is both highly emotional in and of itself; sits at the nexus of the decision-making process regarding the handling of the pandemic, which has effected lockdowns, social behaviour measures, business closures, and others; and concerns the recording and reporting of disease mortality. To clarify a point that has caused much controversy and anger in the public debate, the first part of the present article discusses the very fundamentals underlying the issue of causative attribution with regards to mortality, lays out the foundations of the statistical means of mortality estimation, and concretizes these by analysing the recording and reporting practices adopted in England and their widespread misrepresentations. The second part of the article is empirical in nature. I present data and an analysis of how COVID-19 mortality has been reported in the mainstream media in the UK and the USA, including a comparative analysis both across the two countries as well as across different media outlets. The findings clearly demonstrate a uniform and worrying lack of understanding of the relevant technical subject matter by the media in both countries. Of particular interest is the finding that with a remarkable regularity (ρ>0.998), the greater the number of articles a media outlet has published on COVID-19 mortality, the greater the proportion of its articles misrepresented the disease mortality figures.

Rights

Copyright: © 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Cite as

Arandjelović, O. 2022, 'COVID-19 and science communication: the recording and reporting of disease mortality', Information, 13(2), article no: e97. https://doi.org/10.3390/info13020097

Downloadable citations

Download HTML citationHTML Download BIB citationBIB Download RIS citationRIS
Last updated: 16 June 2022
Was this page helpful?